研究課題名:系外惑星大気の数値計算:雲の存在を考慮した暴走温室状態に関す る 考察

課題代表者:北海道大学大学院理学研究院 石渡正樹 共同研究者:九州大学大学院理学研究院 中島健介 北海道大学大学院理学院 荻原弘尭 神戸大学大学院理学研究科 林 祥介

実施年度:平成26年度~平成26年度

1. 研究目的

この 20 年間で 1,800 個以上の系外惑星が発見さ れてきた。これにより、系外惑星における生命存在可 能性を念頭においた大気大循環モデル (GCM) 実験が 行なわれるようになり (Merlis and Schneider, 2010 な ど)、 気候研究の対象が大幅に増加した。我々の研究 グループにおいても系外惑星の気候多様性の探索およ びそのためのモデル開発を継続して行ってきた。 Ishiwatari et al (2002, 2007) および納多他 (2012) では、 灰色放射・雲なしの場合について、海洋の存在を規定 する暴走温室状態の発生条件に関する考察を行った。 しかし、雲の存在は暴走温室状態の発生条件を大きく 変える可能性がある。本課題では、雲の効果を考慮し て系外惑星的な条件における暴走温室状態の発生条件 について考察することをめざす。

2. 研究計画

GCM を用いて系外惑星を想定した設定において、 太陽定数、自転角速度などの外部パラメータを変更し たパラメータ実験を行う。系外惑星設定として、昼半 球と夜半球が固定されている同期回転水惑星と表層に 存在する水が地球に比較して極端に少ない陸惑星

(Abe et al., 2005)の2種類を考える。まずは T42L26の低解像度実験を行い、結果の概要を把握した後に水 平解像度を T159程度まで、鉛直層数を 96程度まで 増加させる実験を順次行い、雲の振舞いや水蒸気分布、 そして暴走温室状態の発生条件の解像度依存性を調査 する。

用いたモデルは、我々がこれまでに開発・使用して
きた惑星大気大循環モデル DCPAM
(http://www.gfd-dennou.org/library/dcpam)である。その力学過程は3次元球面プリミティブ方程式系から成る。放射過程に関しては、Chou and Lee (1996), Chou
et al. (2001)のスキームを用いて、水蒸気、CO2、雲による放射の吸収と散乱を考慮する。積雲対流については、Relaxed Arakawa-Schbert スキーム (Moorthi and

Suarez, 1992)を用いた。雲水量は、生成(積雲対流ス キームから計算)、移流、乱流拡散、消滅(雲水量に 比例し、消散時間 τ_{LT} をパラメータとして与える)を 考慮した時間発展方程式を解くことにより求める。

3. 進捗状況

これまでに、同期回転水惑星設定を用いて太陽定数 を地球の値に固定した場合についての実験を実施した。 これにより、同期回転惑星大気循環における雲の効果 を調査し、太陽定数変更実験を行う際の基礎資料とす る。自転角速度の値として、 Ω =0 から Ω =1 (Ω は地球 の値で規格化した自転角速度)までの 4 通りの値を与 えた。モデルの解像度は T42L26 とした。

 $\tau_{LT} = 1500 \text{sec}$ (雲あり)、 $\tau_{LT} = 0 \text{sec}$ (雲な)の場 合について半球大気の熱収支を調べた結果を図 1 に 示す。定常状態では夜半球 OLR (図中の)は昼夜間 総熱輸送量に等しくなる。よって、図1から昼夜間熱 総輸送量は雲の有無によらず Ω にほとんど依存しない ことがわかる。これは、昼半球 OLR が Ω にほとんど 依存していないため、昼半球における入射量と昼半球 OLR の差で決定される昼夜間熱総輸送量も Ω に依存 しなくなるためである。この結果は灰色大気の場合に ついて調査を行った納多(2012)と同様のものである。

図 1. 夜半球大気の熱収支。左図が雲なしの場合,右 図が雲ありの場合. が OLR, \forall が昼半球からの顕 熱輸送量, × が潜熱輸送量.横軸は Ω ,縦軸は熱フラッ クス $[W/m^2]$ 。

雲なしの場合では、昼半球 OLR は射出限界 (Nakajima et al., 1992) により制限されるためΩ に依 存しなくなると考えられる。雲有りの場合に関しては、 雲の存在する領域と存在しない領域それぞれにおいて OLR の値がどのように決定されているかを検討する 必要がある。この問題に関しては、今後の課題である。

4. 今後の計画

研究計画に記述した実験を順次実行する。同期回転 設定における高解像度太陽定数増加実験を実施して、 その結果をもとに雲が存在する場合における暴走温室 発生条件に関する考察を行う。その後に、陸惑星設定 を用いた数値実験を行う。

5. 計算機資源の利用状況(2014年4月1日 ~11月30日)

実行ユーザ数:4

CPU 時間 v_deb: 16.27 hours, v_cpu: 3,038.26 hours, v_8cpu: 0 hours, v_16cpu: 0 hours, 計: 3,054.53 hours

6. 昨年度研究課題のまとめ

6.1. 昨年度研究課題名

系外惑星大気シミュレーションモデルの開発:火星ダ スト循環過程の実装実験

6.2. 昨年度研究課題の目的

1 節で記述した気候多様性の探索のためのモデル開 発の一環として、火星モデルの開発を行った。これは、 観測データが得られている火星をモデル開発における 参照点としてとらえ、その数値実験を通してモデルの ポリッシュアップをおこない陸惑星のような乾燥惑星 の計算にも耐えうるモデルの開発を目指したものであ る。

火星大気は大気ダストの存在によって特徴づけられ る。ダストは太陽放射を吸収し大気の温度分布に大き く影響する。また、数年おきにダストが火星全体を覆 うグローバルダストストームが発生し、これが火星に 特有な気象現象となっている。各国の研究グループで は、GCM へのダスト循環過程スキームを組み込み、 それらを用いたシミュレーション計算を行っている

(Kahre et al., 2006 など)。これに対して、我々の DCPAM では、ダスト循環過程スキームが組み込みこ まれていない状況にあった。昨年度課題では、DCPAM へのダスト循環過程に関する数値スキームの増強整備 とそれらを用いた実装実験をおこなった。

新たに実装を行ったスキームは大規模風応力による 巻き上げスキーム、局所的なダストデビルによる巻き 上げスキーム、重力沈降過程スキームである。これら のスキームに対する実装実験においては、放射過程と して、CO₂ と大気ダストを考慮した放射スキームを用 いる(Takahashi et al, 2003; Takahashi et al., 2006)。放 射スキームに与えるダスト分布は鉛直一定のものを用 いた。地表面特性(地表面熱慣性、地表面アルベド、 地形高度)にはマーズグローバルサーベイヤーの観測 結果を用いる。実装実験の解像度はT21L36とした。

6.3. 昨年度研究課題の成果概要

ダスト循環過程として、モデルで解像される風応力 によるダストの巻き上げを表現する KMH スキーム (Kahre et al.、2006)、ダストデビルによるダストの 巻き上げを表現する DDA スキーム (Newman et al.、 2002)、重力沈降スキーム (Conrath、1975; Lin and Rood、 1996)を実装した。これらのスキームを用いてダスト フラックス診断実験を行った。

図 2 の左図に KMH スキームによるダストフラック スの東西平均時間変化を示す。極冠縁辺と北半球の秋 から冬にかけて南半球の低緯度でダストフラックスが 大きくなっている。図 2 の右図に DDA スキームによ るダストフラックスの東西平均の季節変化を示す。 $L_s = 270° - 300°$ の南緯 30 度付近でダストフラックス が大きくなっている。これらの季節変化パターンは、 過去の研究結果 (Kahre et al., 2006; Newman et al., 2002) と類似したものではあるが、ダストフラックスの値は DCPAM の結果の方が大きなものとなっている。我々 は、この違いが鉛直レベルの置き方などのモデル設定 の違いによって生じたと考えている。今後も更に詳し く調査を行う予定である。

図 2. 東西平均ダスト巻き上げフラックス [kg/m²/sec]の季節変化。左図がKMHスキームの場合,右図がDDAスキームの場合.左図の等値線の表す値は 1.0×10^{-5} (青)、 1.0×10^{-2} (緑)、10.0(橙)である。右図の等値線の表す値は 4.25×10^{-7} (青)、 7.56×10^{-7} (水色)、 1.34×10^{-6} (橙)、 2.39×10^{-5} (赤)である。単位はいずれも kg/m²/sec.

6.4. 昨年度計算機資源の利用状況(2013 年 6 月 1 日~2014 年 3 月 31 日)
実行ユーザ数: 4

CPU 時間 v_deb: 1.14 hours, v_cpu: 4,023.11 hours, v_8cpu: 0 hours, v_16cpu: 0 hours, 計: 4,024.25 hours