研究課題名:地球流体中の秩序渦構造と3次元スカラー輸送現象

課題代表者:電気通信大学大学院電気通信学研究科 共同研究者:電気通信大学大学院電気通信学研究科 実施年度:平成 20 年度~平成 20 年度

1. 研究目的

大気や海洋等の地球流体現象では秩序渦構造が長く 安定を保ち、その相互作用が乱流動力学やスカラー輸 送を支配する。大規模な地球流体運動は地球の自転と 密度成層効果のために準二次元的なものと見なすこと ができ、鉛直高さの異なる層間の相互作用を考慮した 準地衡風近似で記述される。我々は秩序渦構造に着目 した乱流渦モデル(Li et al., 2006)を構築したが、そ の中では慣性重力波の影響を考慮することは出来ない。 そこで、本研究では慣性重力波の影響を考慮した「最 適バランス近似」のもとでの秩序渦構造の性質を調べ、 乱流渦・波動モデルを開発する。

2. 研究計画

2006 年度まではCASL(Contour Advective Semi Lagrangian)法を用いて直接数値計算を行なった。そし て2007 年度よりCASL法を拡張した「最適化バランス 法」への取り組みを開始し、それによって慣性重力波 の存在を取り込むことが可能となった。年度当初は、 開発・動作確認が終了した後、2007 年度末を目処にス ーパーコンピュータで稼動させる予定であった。しか し確認作業が予定どおり進まず、2007 年度中の稼動は 実現することが出来なかった。2007 度末に動作確認が 終了したため、2008 年度中にスーパーコンピュータで の実行を開始する予定である。

3. 進捗状況

最適バランス法について、最新版のコードを一般的 な Linux マシンでの動作テストを行い、問題がないこ とを確認した。これにより並列化前での実行は、基本 サブルーチン (FFT など)を含めておおむね問題がな いことがわかった。また、このコードの元になった CASL コードの MPI による並列化も完了した。今後は、 両者のコードを比較・修正を行うことにより、環境研 スーパーコンピュータ環境下での MPI による並列化 を行う。これにより高解像かつ高速度での実行が期待 できる。

一方、準地衡風乱流渦モデルを用いた多自由度系で の模擬乱流数値シミュレーションを昨年度より継続し て行い、さまざまな状況における統計的性質を調べた。

我々は前報で報告したように、無限領域中の立方体 (2.444)領域に、点渦(渦数N = 2000、循環 $\Gamma_{i=1,2...,N}$ =1) をランダムに一様分布させミクロカノニカル統計的に サンプル数 10⁶個の系を用意し、エネルギー最頻度(E = Ec)となる場合で数値計算を行った(以降'Case A')。 今回は'Case A'に対して、鉛直方向に渦度領域を約 4 倍とした場合('Case B')、およびエネルギーの低い 状態('Case C')・エネルギーの高い状態('Case D')に おける統計性について調べた。ここで保存量はエネル ギー、渦重心、角運動量であり、長さのスケールは角 運動量を用いて規格化し(Lundgren and Pointin, 1997)、 時間tはポテンシャル渦度で無次元化した。平衡状態の 渦分布は渦重心に対してほぼ軸対称であったため、周 方向は一様であるとみなして平均を取り、対称軸から の距離をr、鉛直方向の座標zとした平衡分布F(r, z)を 調べた。 $t = 10 \sim 50$ で平衡状態となるため、数値計算 結果はt = 50以降を時間平均している。

宮嵜 武

高橋直也·岡田拓也

'Case B'では初期状態として図1(a)に示すように直 方体内部にランダムかつ一様に渦を配置した。平衡状 態の渦分布は図1(b)及び図2のようになった。図3に 示す鉛直方向角運動分布より'Case A'に対して'Case B'ではより狭い鉛直方向渦度領域で角運動量が減少し、 対称軸に対して渦分布が集中する現象('end-effect')が より顕著に確認された。

図1 三次元渦分布(Case B): (a)初期状態、(b)平衡状態

図3 鉛直方向角運動量分布: Case AとCase Bの比較

図4に平衡状態の角運動量分布のエネルギー依存性、 図5にy方向より見た平衡渦分布('Case A'・'Case B') を示す。'Case A'に対して'Case C'で角運動量は中心層 で大きくなり上下層で小さくなった。よっ て'end-effect'がより顕著となる平衡渦分布となっ た。'Case D'で角運動量分布は中心層で小さくなり上 下層で大きくなった。図5に示す平衡渦分布からも対 称軸に対して渦が中心層では集中し上下層では拡散し ている様子がわかる。これは'Case A'・'Case C'とは上 下層と中心層の分布が逆転した全く異なる分布であ り'inverse-end-effect'とも呼べる分布となった。

図4 鉛直方向角運動量分布:エネルギー依存性

図 5 y 方向より見た平衡渦分布: (a) Case A (b)Case D

また、最大エントロピー理論を用いて'Case A~D' の条件の下で理論解析を行った。最大エントロピー理 論を用いて平衡状態の連続分布解を予測するのは変数 が多いため収束解を得るのが難しい。そこで連続分布 を"top hat"型に近似した"Patch Model"の仮定の下に鉛 直方向の角運動量分布を調べた。'Case A'に対応する場 合の鉛直方向角運動量分布を図3の破線で、"Case B" に対応する(鉛直方向に渦度領域を約4倍とした)場 合を実線で示す。直接数値計算結果と同様に、より狭 い鉛直方向渦度領域で角運動量が減少し"end-effect"が より顕著に現れた。また図6に鉛直方向角運動量分布 のエネルギー依存性を示す。直接数値計算結果と定性 的な一致が見られ、エネルギーが低いほど角運動量は 中心層で大きくなり、上下層で小さくなる。つま り"end-effect"はより顕著となる。一方、エネルギーを 高くすると角運動量分布はエネルギーが低い場合と対 照的な分布となる。角運動量は中心層において小さく なり上下層において大きくなる。

角運動量分布とエネルギーの関係は次のように考え ることが出来る。中心層における渦分布がエネルギー を支配するため、よりエネルギーが低い場合は中心層 における分布は対称軸に対して広がり角運動量は大き くなる。しかし角運動量の制約条件により上下層では 分布が対称軸に対して収縮し、角運動量は小さくなる。 同様にエネルギーが高い場合では中心層での角運動量 は小さくなり、上下層での角運動量は大きくなると考 えられる。

図 6 最大エントロピー理論による鉛直方向角運動量 分布:エネルギー依存性

4. **今後の計画**

CASL法コードの並列化結果と共に、最適バランス 法の汎用並列コード(MPI)による並列化を進める。ま たもっとも計算量の多い部分(FFT)をSX用の並列サ ブルーチンと入れ替え、効率の上昇を図る。

5. 計算機資源の利用状況(2008 年 4 月から 10 月まで)

実行ユーザ数:3 CPU時間 1ノード未満:0 hour,

1 ノード: 0 hour, 2 ノード: 0 hour, 計 0 hour

6. 昨年度研究課題のまとめ

6.1. 昨年度研究課題名

地球流体中の秩序渦構造と3次元スカラー輸送現象

6.2. 昨年度研究課題の目的

今年度と同じ。

6.3. 昨年度研究課題の成果概要

数値計算のパラメータ領域を拡大し、さまざまなア スペクト比やエネルギーレベルでの平衡状態を得た。 また最大エントロピー理論を展開し数値計算結果との 一致をみた。

6.4. 昨年度計算機資源の利用状況

実行ユーザ数:2 CPU時間 1 ノード未満:0 hour,

1 / -ド: 0 hour, 2 / - ド: 0 hour, 計 0 hour

参考文献

Li Y., Taita H., Takahashi N., Miyazaki T. (2006) Refinements on the Quasi-geostrophic Ellipsoidal Vortex Model. Phys. Fluids, 18 (7), 076604 1-8

Lundgren T.S., Pointin Y.B. (1997) Statistical Mechanics of Two-Dimensional Vortices. J. Stat. Phys., 17(5), 323-355