Urban Morphology
Applications, Issues and Prospects for Resiliency Assessment

Dr. Paul Stangl, Western Washington University
Workshop on Tools and Indicators for Assessing Urban Resilience
University of Tokyo, December 8, 2015
Urban Morphology – Analysis of Urban Form

1) Various purposes
 • Identification & measurement of formal properties
 • Typologies (i.e. building types)
 • Multiple scales & relations
 • Process focused

2) Flexible tool
 • History, geography, archeology, architecture, urban design, planning, historic preservation, economics

3) Potential for resiliency assessment
 • Adapt methods of analysis to resiliency goals
 • Scan for usable criteria
 • Identify persistent issues
Key Features and Issues

1) **Inconsistency** in focus, methods
 - Fragmentation among researchers:
 - Various nations, languages
 - Various professions
 - Result: lacks even standard terminology
 - Core of field – some consistency
 - Two major schools diffuse ideas globally (see Caniggia, Conzen)

Resiliency

Is one overarching framework for analysis & response desirable or possible?
Are standard methods of investigation sufficient?
Is a common vocabulary and set of measures sufficient?
2) **Purpose of Study** shapes approach

- Focus will vary accordingly, i.e.
 - Analyze historic development of city
 - Inform architectural design
 - Regulate development in historic district
- Setting also influential—differences in natural environment, urban form & culture

Resiliency

Which aspects are pertinent:

- **Impact** — Potential hazards and vulnerabilities? Structural durability? Emergency shelter?
- **Recovery** — Potential short-term occupation? Constraints, legal, cultural or economic?
- **Adaptation** — Encourage or regulate changes? Pre-disaster? Post disaster?
3) **Typologies** reduce urban continuum to discrete units

- Form-based; use secondary
 - Architecture – building types
 - Geography – plan unit (area with homogenous features)
 - Planning (form-based codes) – street types

- Degree of specificity
 - Low for simplicity, flexibility, extent of applicability
 - Fusch (1994) – Identifies 6 types of piazza in all Italy
 - High for precision, control
 - San Francisco Downtown Plan – regulates 11 types of public space in downtown area

Resiliency

Which types and measures are most pertinent for:
Assessment – For estimating impact damage, shelter potential, etc.
Regulation and investment – For target hardening, adaptation
Conservation during recovery – Identify sites of special cultural value, cultural sensitivities relevant to use of urban space, etc.
4) Scale and Hierarchy simplify and aggregate information

• Range: Building materials to region

• Intermediary scales: Applicability of each is variable
 • Existence or importance of feature described
 - i.e. Parcel is essential to Conzen, but irrelevant to modern campus-style developments
 • Urban features can be placed in more than one category
 - i.e. Urban fabric (buildings & parcels) may be part of street or part of block

• Relationship between scales: complex, variable with topic
 • Caniggia – Focus: building types accrete into urban fabric on street (connecting routes create blocks)
 • Conzen - Focused on rural land patterns shape parcels, building form

Resiliency

Should scale be a central organizing criteria, or is another format better? Which data can be usefully aggregated upwards or downwards?
Illustration: US Form-Based Codes
Different Typologies to Control Design Across Scales

1) Building Type
 • Original approach
 • Regulates building form & placement on parcel
 • Maximize locational flexibility, mix of uses

2) Street Type*
 • Limited use
 • Regulates roadway & building frontage as unit (public realm)

3) Transect Type (zones)
 • Most widely used
 • Transects organized by intensity of use or character
 • Regulates parcel layout, some building form, some use
 • Roadway types and other features may be keyed to transects

* Recent shift to “frontage based”: Differentiates sides of street, separates roadway from building frontage
Adding Urban Morphology to Resiliency

- Existing index focused on city scale
 - Cutter, Burton & Emerich (2010) – Disaster Resilience Index – Infrastructure subset
 - Housing Type - Percent housing units that are not mobile homes
 - Shelter Capacity – Percent vacant rental units
 - Medical Capacity – Number of hospital beds per 10,000 persons
 - Access/Evacuation Potential – Principle arterial miles per square mile
 - Housing Age – Percent housing units nob built before 1970 and after 1994
 - Sheltering needs – Number of hotels/motels per square mile
- Existing research and regulation also focused on building structure
- Micro-analysis: addition of in-between scales, relations
 - Analyze consequences of spatial layout
 - Trace processes between scales (aggregate & disaggregate data)
 - Identify impacts of events
 - Examine effectiveness of redundancy
Suggested scales for resiliency analysis

City

Districts

Blocks (Street Pattern)

Parcels & Structures

Mass Transit
Private Auto

Walk
Bicycle
Medical Capacity

Measurement: total beds in city

Possible measures:
- Beds per district (size of service area?)
- Beds keyed to hazard zones
- Redundancy: secure routes to hospitals

Beds concentrated in major hospitals
Hazard reduces or eliminates access
Redundancy: beds per district
Access/Evacuation Potential

Measurement: arterial miles per square mile

Goal of arterial quantity may conflict w. identity, sustainability

Evacuation = lanes exiting city: Capacity in passengers/hour

- Mass transit has higher capacity
- Social justice
- Relies on feeders from districts
- Redundancy: alternative modes & routes

Possible measures

- Potential passengers/hour exiting city by:
 - Rail (by line)
 - Ferry
 - Bus
 - Private auto (by route)
 - Walking/bicycling
- Passengers/hour from districts to inter-city lines (emphasis on low-income districts)
- Percent of population evacuated in X hours by at least 2 routes
Access

- Emergency food & water, fuel, clothing, construction material;
- Redundancy through alternate modes & routes into city
- Provision of emergency supplies to remaining residents following event
- Transport to district distribution centers
- Public facility (school) as dist. center, provisional health clinic, etc.
- Street connectivity: minimizes travel distance (small blocks)
- Park as potential depot, waste disposal

Possible measures

- Connectivity: Maximum block perimeter or length across block (section) for districts
 Inter-city stations to districts (transit or vehicle) assessed by travel time, potential alternative routes
- Public building or park in 1 kilometer walk of X% of residents (districts defined?)
Housing Type & Sheltering Needs

Measurements: % of housing that are not mobile homes and # of hotels/motels per sq. mile

• New typology of buildings based on:
 • Structure - durability under strain from different hazards (Fire, earthquake, flood, high wind, etc.)
 • Spatial capacity - relevant to needs during hazard impact and recovery
 • Ownership (public or private) and potential access during and after event
• Potential building typology for resilience
 • Structurally unsound buildings (determined by hazard type and stress level)
 • Estimate injury & loss of human life - % of population
 • Estimate damage to buildings
 • Construction materials needed
 • Salvageable materials for reconstruction by component; use as fuel; other uses
 • Debris for disposal (cubic meters)
 • Debris posing potential hazard (i.e. waterborne, airborne)
 • Structurally sound large public buildings (square meters of space per district)
 • Structurally sound small public buildings (square meters of space per district)
 • Structurally sound rentable private buildings (subtypes include hotels, large assembly spaces, etc.)
 • Structurally sound private buildings (% of units or total # of units)
• Building frontage type, roof type & relation to parcel
 • Related to climate, tradition, economic pressure, building trends
 • Central courtyard, blank wall on street, flat roof – hot, dry areas
 • Fronting street or central to parcel, gallery on street, sloped roof – hot, humid areas

• For resiliency
 • Building – parcel
 • Total permeable and impermeable surface
 • Secure outdoor space during recovery – yard enclosed by wall or internal courtyard
 • Roof type
 • Flat – storage space; habitable space in flood; green roof, garden
 • Sloped – water collection, orientation for solar panels
 • Frontage type
 • Forecourt, gallery, porch, terrace, stoop, yard
 • Potential relevance may be tied to cultural specific uses of urban space
Conclusions

• An array of measures for evaluating could contribute to better understanding and addressing urban resiliency

• Complete knowledge and control are not possible: limits on data, complexity of topic

• To what extent can academics and practitioners benefit from indicators? Are there dangers of relying on them?