We present an algorithm for retrieving column-averaged dry air mole fraction of carbon dioxide (XCO2) and methane (XCH4) from reflected spectra in the shortwave infrared (SWIR) measured by the TANSO-FTS (Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer) sensor on board the Greenhouse gases Observing SATellite (GOSAT). The algorithm uses the two linear polarizations observed by TANSO-FTS to improve corrections to the interference effects of atmospheric aerosols, which degrade the accuracy in the retrieved greenhouse gas concentrations. To account for polarization by the land surface reflection in the forward model, we introduced a bidirectional reflection matrix model that has two parameters to be retrieved simultaneously with other state parameters. The accuracy in XCO2 and XCH4 values retrieved with the algorithm was evaluated by using simulated retrievals over both land and ocean, focusing on the capability of the algorithm to correct imperfect prior knowledge of aerosols. To do this, we first generated simulated TANSO-FTS spectra using a global distribution of aerosols computed by the aerosol transport model SPRINTARS. Then the simulated spectra were submitted to the algorithms as measurements both with and without polarization information, adopting a priori profiles of aerosols that differ from the true profiles. We found that the accuracy of XCO2 and XCH4, as well as profiles of aerosols, retrieved with polarization information was considerably improved over values retrieved without polarization information, for simulated observations over land with aerosol optical thickness greater than 0.1 at 1.6 μm.