To understand the mechanism of formation of the secondary organic aerosols (SOAs) produced by the ozonolysis of isoprene, proton transfer reaction mass spectrometry (PTR-MS) was used to identify the semi-volatile organic compounds (SVOCs) produced in both the gaseous and the aerosol phases and to estimate the gas-aerosol partitioning of each SVOC in chamber experiments. To aid in the identification of the SVOCs, the products were also studied with negative ion-chemical ionization mass spectrometry (NI-CIMS), which can selectively detect carboxylic acids and hydroperoxides. The gaseous products were observed by on-line PTR-MS and NI-CIMS, whereas the SVOCs in SOAs collected on a filter were vaporized by heating the filter and were then analyzed by off-line PTR-MS and NI-CIMS. The formation of oligomeric hydroperoxides involving a Criegee intermediate as a chain unit was observed in both the gaseous and the aerosol phases by NI-CIMS. PTR-MS also detected oligomeric hydroperoxides as protonated molecules from which a H2O molecule was eliminated, [M-OH]+. In the aerosol phase, oligomers involving formaldehyde and methacrolein as chain units were observed by PTR-MS in addition to oligomeric hydroperoxides. The gas-aerosol partitioning of each component was calculated from the ion signals in the gaseous and aerosol phases measured by PTR-MS. From the gas-aerosol partitioning, the saturated vapor pressures of the oligomeric hydroperoxides were estimated. Measurements by a fast-mobility-particle-sizer spectrometer revealed that the increase of the number density of the particles was complete within a few hundred seconds from the start of the reaction.