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Abstract

The mechanisms underlying the differential sensitivity of plants to the ubiquitous air
poliutant ozone (O;) are far from fully understood. There is, however, a growing
realisation that, following the uptake of the pollutant into the leaf interior, the first
reactions take place in the aqueous matrix associated with the leaf cell walls (i.e, the
leaf apoplast). This compartment forms the primary boundary between atmosphere
and biosphere. The leaf apoplast is known to contain several antioxidants that react
readily with O; (and/or it’s primary dissolution products) to yield ostensibly harmless
compounds., There is therefore the possibility that significant amounts of Q; are
scavenged (i.e. detoxified) prior to reaching the primary target - the plasmalemma. If
this is the case, antioxidants situated in the leaf apoplast may afford an important
first-line of defence against O;. Herein, we focus on the role played by one of these
compounds, ascorbate (vitamin C), in screening the plasmalemma from O;-induced
oxidative insult,
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Introduction

The past century has witnessed a steady rise in tropospheric ozone {(0) concentrations in
the Northern hemisphere (Volz and Kley, 1988; Marenco et al., 1994), plus a sharp increase in
the frequency and duration of potentially damaging photochemical episodes (Stockwell ef al.,
1997). Indeed, there is unequivocal evidence that current ground-level concentrations of the
O; are high enough to depress crop yields (Heck ez al., 1983; Fuhrer ef al., 1997), affect the
composition and diversity of unmanaged ecosystems (Davison and Barnes, 1998) and
contribute to localised declines in tree vitality in parts of Europe, North and Central America
and the Far East (Chappelka and Chevone, 1992; Sandermann et al., 1997; 1zuta, 1998).

The phytotoxicity of O; arises primarily as a result of the oxidative damage it causes to
plasmalemma constituents (Heath, 1980, 1987, 1988). The pollutant is taken-up into the leaf
interior, via the stomates (Kersteins and Lendzian, 1989), where it reacts with constituents of
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the aqueous matrix associated with the cell wall (the apopiast) to yield a suite of reactive
oxygen species which, in addition to Os, result in the oxidation of sensitive components of the
plasmalemma, and subsequently the cytosol (Heath, 1980; Chameides, 1989; Moldau, 1998).
In this sense, the oxidative stress induced by O; shares similarities with the initial events
associated with other plant pathologies and the downstream consequences of Os-induced
oxidative damage are well-documented i.e. visible leaf injury (i.e. localised cell death),
stimulated rates of respiration, the suppression of photosynthesis, enhanced emissions of
ethylene, premature leaf senescence and shifts in resource partitioning (Harnis and Bailey-
Serres, 1994, Kangasjiarvi ef al., 1994; Schraudner ef al, 1997). These responses are
manifested in decreased plant growth, depressed crop yields and reduced quality of harvested
components (Runeckles and Chevone, 1992; Davison and Barnes, 1998; Barnes e al., 1999a,
- b; Turcsanyi et al., 2000a). Since the plasmalemma is the principle site of attack, the
interception and detoxification of O; (and/or its reactive products) by constituents of the leaf
apoplast may play a crucial role in averting cellular damage (Heath, 1988; Kelly et al., 1995,
Dietz, 1997, Cross et al, 1998; Lyons er al., 1999a). In this contribution, we focus on
evidence supporting a potentially important role for extracellular ascorbate (ASC) in mediating
the tolerance of plants to O;.

Ozone resistance

Herein, the term ‘O; resistance’ is defined as the “ability to maintain growth and remain
free from injury in a polluted environment” (sensu Roose et al., 1982). Resistance need not be
complete and, based on the conceptual model proposed by Tingey and Andersen (1991), is
envisaged to be mediated through effects on pollutant uptake (avoidance through changes in
stomatal conductance) and/or changes in the tolerance of plant tissues following uptake
(through effects on metabolism resulting in an increased capacity for the detoxification of the
pollutant and its potentially damaging reaction products).

There is considerable variation in O; resistance within, as well as between, species (see
Figure 1 which shows data for plantain [Planfago major]). This variation, which has been
shown in many cases to be heritable, has been capitalised upon in several plant breeding
programmes - directed selection resulting in the improved Os resistance of strains of alfalfa
(Medicago sativa L), sweet corn (Zea mays L.), snap bean (Phaseolus vulgaris L.), eastern
white pine (Pinus strobus L.) and aspen (Populus tremuloides Michx.) (Howell ef al., 1971,
Cameron, 1975; Mebrahtu ef al., 1990; Karnosky, 1991; Karnosky ef al., 1992).

It is generally concluded from such breeding experiments that O; resistance is a
quantitative trait, governed by the additive effects of several genes (Sand, 1960; Howell et al.,
1971; DeVos ef al., 1982; Roose, 1991). However, Macnair (1991) has questioned this view,
providing evidence that in many cases it is inevitable that air pollution resistance has been
identified as a polygenic trait. Hence, it remains possible that O resistance is controlled by a
relatively small number of major genes and several modifiers. There is incontrovertible
evidence that at least one of these genes is connected with the biosynthesis of l.-ascorbate
(vitamin C).

Evidence supporting a role for ascorbate in mediating ozone resistance

Ascorbate is an abundant and powerful antioxidant which serves essential metabolic
functions in both plants and animals (Loewus 1980, 1988, Smimnoff, 1996, Smirnofl' and



Pallanca, 1996; Noctor and Foyer, 1998). The central position occupied by ASC in the
metabolic control of reactive oxygen species is illustrated in Figure 2.
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Fig. 1 Ozone resistance in a range of geographically-distinct pepulations of Plantago major. Ozone
resistance assessed in terms of the % change in relative growth rate induced by a two-week exposure to
70 ppb ozone for 7 h d”’. Data from Reiling and Davison (1992) (open bars) and Lyons et al. (1997)
{closed bars).
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Fig. 2 Schematic representation of the central position occupied by reduced ascorbate (ASC), and
its oxidised forms, monodehydroascorbate radical (MDHA) and dehydroascorbate (DHA), in the
metabolism of reactive oxygen species: ozone {0;); superoxide radical (O;); hydroxyl radical
(OH); singlet oxygen (‘O,); Hydrogen peroxide (H;0;). Enzyme and other metabolites involved
are: superoxide dismutase (SOD); catalase (CAT); ascorbate peroxidase (APX);
monodehydroascorbate radical reductase (MDHAR); dehydroascorbe reductase (DHAR);
glutathione reductase (GR); reduced glutathione (GSH); oxidised glutathione (GSSG). Redrawn
from Bames ef al. (1999Db). .



There are several strong lines of evidence linking leaf ASC content with Os resistance: (i)
research with Arabidopsis mutants. Work performed by Conklin and co-workers (1996, 1997,
1999) has shown that O;-resistance co-segregates with the capacity to synthesize ASC in a
range of Arabidopsis thaliana 1.. mutants derived from vtc/ (formerly sozI); an ultrasensitive
genotype that accumulates only 25% of the wild type leaf ASC concentration due to a
deficiency in a key enzyme of the ASC biosynthetic pathway, GDP-mannose
pyrophosphorylase. (i) Correlative_evidence. Endogenous levels of ASC correspond with
variations in Os resistance in some cases (Lee ef al., 1984; Bilodeau and Chevrier, 1998), but
not others (Menser, 1964; Ranieri er al., 1999). (iii) Manipulation of leaf ASC content.
Treatments employed to enhance leaf ASC content e.g. feeding ASC to roots (Méchler ef al.,
1995) or spraying foliage (Freebairn, 1960, Freebairn and Taylor, 1960) have been shown to
afford additional protection against O;. This effect is illustrated in Figure 3 using some of the
authors’ data to show that the extra protection observed in ASC-sprayed leaves cannot be
explained through reduced rates of O; uptake (i.e. protection occurred in ASC-sprayed leaves
of common plantain (. major L.) in the absence of shifts in stomatal conductance).
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Fig. 3 The effect of foliar ascorbate application on the response of (i) CO, assimilation rate (pmol
m™” s™) and (ii) stomatal conductance to water vapour (mmol m? ™) in leaves of Plantago major
exposed to charcoal/Purafil®-filtered air (CFA, open symbols) or CFA plus 400 ppb ozone (closed
symbols). Squares represent control plants sprayed with 10 mM NaHCO;, circles represent plants
sprayed with 10 mM Na-ascorbate. Data represent means (7 = 4) + SE. Different letters denote
significant differences (P< 0.05). Redrawn from Zheng ef al. (2000).

In contrast, treatments which reduce leaf ASC content have been shown to enhance
sensitivity to Oz (Menser, 1964; Moldau et al., 1998). More recently, some researchers have
employed the recently-identified biosynthetic precursor of ASC, L-galactono-1, 4-lactone (L-
GL), to enhance the ASC content of plant tissue. Bilodean and Chevrier (1998), utilising an
O; sensitive ‘colourless-mutant’ of Euglena gracilis, demonstrated that the addition of L-GL
to the growth medium resulted in elevated levels of ASC in the cells, and increased their
tolerance (in terms of cell viability) to O; exposure. In parallel experiments conducted by some
of the authors (J. Maddison, T. Lyons & J. Barnes, unpublished), leaf ASC content was
doubled in radish (Raphanus sativus L)) fed 50mM L-GL without effects on stomatal
conductance. The treatment was found to afford complete protection against the negative
effects of Os (in terms of visible injury and effects on plant relative growth rate). '



Importance of the sub-cellular localisation of ascorbate in the interception of ozone

The first reactions of ozone occur at the air/liquid interface (i.e. the leaf apoplast). Around
1-2% of the ASC found in leaves is located at this boundary. Hence, the ASC concentration in
leaf cell walls ranges from 10 to 4000 pM (Castillo and Greppin, 1988; Takahama and Oniki,
1992; Polle et al., 1990, 1995; Luwe and Heber, 1995; Vanacker ef al., 1998a; Lyons ef al.,
1999b; Ranieri et al., 1999; Turcsanyi ef al., 2000b). This raises the question of how much of
the incoming O; can be scavenged by this pool of ASC, and what the background rate of ASC
consumption is (since ASC also participates as a co-factor in several enzyme-based reactions).
In vitro studies on pure solutions have revealed that the ASC/Os reaction proceeds rapidly
(second-order reaction rate constant is between 4.8 x 107 and 6.0 x 10" M's! at
physiologically-relevant pHs [Giamalva et al, 1985; Kanofsky and Sima, 1995a)).
Experiments involving the ozonation of isolated biclogical fluds, e.g. apoplastic washing fluid
(Kanofsky and Sima, 1995b), respiratory tract lining fluid (Kelly er al., 1995; Cross et al.,
1998) and blood plasma (Cross ef al, 1992; van der Vlet er al., 1995) reveal that ASC is
consumed at a rate dependent upon the concentration and the duration of exposure to the
pollutant. Moreover, these studies have demonstrated that ASC is oxidised prior to reaction
with lipid and protein constituents. These findings substantiate reports from in vivo studies
that Qs exposure results in the depletion of extracellular ASC (Castillo and Greppin, 1988,
Luwe et al., 1993; Polle et al., 1995; Luwe and Heber, 1995; Mudway et al., 1999; Turcsanyi
et al., 2000b). However, some researchers - Jakob and Heber (1998), in particular - are not
yet convinced that in vitro findings are reciprocated in vivo. These authors have found that
ASC does not prevent changes in the fluorescence of oxidation-sensitive dyes vacuum-
infiltrated in to the apoplast of spinach (Spinacia oleracea 1.) leaves, in contrast to
experiments carried out in the test tube,

The product of ASC oxidation, dehydroascorbic acid (DHA) is reduced to regenerate
ASC, or is rapidly and irreversibly hydrolysed to yield 2, 3-diketogulonic acid and an array of
degradation products (Loewus, 1980, 1988; Smirnoff 1996; Deutsch, 1998a). Since DHA
cannot be reduced efficiently in the apoplast, it is believed to be returned to the cytosol for
recycling (Castillo and Greppin, 1984; Polle er al., 1990; Luwe ef al., 1993). This view is
supported by the presence of a carrier-mediated system on the plasma membrane for the
transport of ASC/DHA (Rautenkranz ef al., 1994; Foyer and Lelandais, 1996; Horemans ef
al., 1996). This system displays a higher affinity for DHA than for ASC (Horemans et al.,
1997, 1998). Recent reports by Vanacker and co-workers (Vanacker ef al., 1998a, b, 1999)
suggest that there is the possibility, at least in some species, that DHA may be enzymatically
reduced back to ASC in the apoplast - this finding awaits further investigation. It is also
possible that monodehydroascorbate radical is formed as an intermediate during the reaction of
ASC and Os. If this is the case, plasmalemma-bound monodehydroascorbate radical educates
may facilitate the rapid regeneration of apoplastic ASC in situ (Navas ef al., 1994, Asard et al.,
1995; Bérczi and Mgller, 1998).

Estimation of ozone detoxification in the leaf apoplast
Semi-quantitative estimates of the degree of protection afforded by apoplastic ASC were
first provided by Chameides (1989). This author’s insightful approach attempted to describe

the uptake of O3 from the atmosphere to the mesophyll cell wall. The study indicated that the
ASC/0O; reaction in the leaf apoplast could provide a major sink for the pollutant, based on a



first-order loss co-efficient for the reaction of between 3,000-60,000 s™'; governed by the rate
of the reaction and the concentration of apoplastic ASC (taken to be 50-1000 uM). More
recently, a model (SODA; Simulating Ozone Detoxification in the Leaf Apoplast} which
extends the one-dimensional approach adopted by Chameides (1989) to encompass the re-
supply of ASC into the leaf apoplast under O, exposure has been developed (Plochl et al.,
2000). SODA estimates O; uptake through the usual corollary with a series of resistances to
diffusion first described by Gaastra (1959). Sub-cellular distribution of ASC is estimated from
the diffusional movement of the neutral form, ascorbic acid (AA), and the ‘trapping’ of this
compound in compartments of differing pH (sensu Slovik ef al., 1992). The detoxification of
O; in the leaf apoplast through direct reaction with ASC is modelled using a biomolecular
reaction rate of 4.8 x 10’ M s (Kanofsky and Sima, 1995a). A schematic representation of
the modelled resistance-reaction network is presented in Figure 4.

laminar boundary %

Fig. 4 Schematic representation of the diffusion-reaction network modelled in SODA; considering
the uptake of ozone (Q;) from the air (zx7) through the laminar boundary, stoma, intercellular air
space (ivt), and its dissolution and reaction with ascorbate (ASC) in the aqueous phase of the cell
wall (the apoplast, sro), the distribution of ASC between cell compartments, as well as the transfer
of dehydroascorbic acid (DHA) from apoplast to cytosel and its subsequent regeneration. Other
abbreviations; ¢ = concentration; p; = plasmalemma; i = chloroplast; vac = vacuole. Redrawn from
Plochl ef al. (2000).

The full complement of parameters necessary to rigorously test the theoretical prediction
of mesophyl] cell wall ASC concentrations, and O; interception, have not yet been determined
for an archetypal plant under standardised conditions. However, the best available dataset at
this time, collected by Turcsanyi ef al. (2000b) for broad bean (Vicia faba L.) demonstrates a



reasonable agreement between modelled and measured ASC data (Figure 5). 1t is also
interesting to note that recent work reveals (i) a positive correlation between the ASC content
of the leaf apoplast and O; resistance (expressed in terms of reductions in growth rate induced
by the pollutant) across a range of genotypes of P. major and R. sativus (Figure 6), and (ii)
that pre-exposure of P. vulgaris plants to continuous darkness decreases the ASC content of
the leaf apoplast by 80%, and results in an increase in injury to the plasmalemma upon
exposure to acute O; (Moldau ef al., 1998).
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Fig. 6 Relationship between ascorbate content of the leaf apoplast (nmol g' FW) and ozone
resistance in (i) populations of Plantago major (r = 0.731, P = 0.002) and (ii) cultivars of
Raphanus sativus (r* = 0.714, P = 0.004). Ozone resistance was assessed in terms of the % change in
relative growth rate induced by a two-week exposure to 70 ppb ozone for 7 h d”. Data represent means
(n = 10-15) * SE (replotted from Barnes ef al., 1999b).



Model simulations emphasize the importance of pollutant concentrations in the
atmosphere, stomatal conductance and the concentration of ASC in the leaf apoplast, in
governing the flux of Os that impinges on the plasmalemma (see Plochl et al, 2000). This
point is emphasised in Figure 7 which shows (i) the effect of apoplastic ascorbate
concentration on the flux of impinging on the plasmalemma. It is worthy of note that, at a
concentration of ascorbate in the leaf apoplast of 500 uM, ~60 % of the incoming O; could
be detoxified before it reaches the plasmalemma; (ii) the strong effect exerted by cell wall
thickness on the detoxification of Os because of the way in which it modifies the length of the
aqueous diffiision pathway to the plasmalemma (Nobel, 1991) and therefore the residence time
of the pollutant in the cell wall. The thicker the wall, the greater the interception of the
pollutant - reinforcing the conclusion of Chameides (1989); and (iii) the way in which the sub-
cellular distribution of ASC is potentially affected by apoplast pH. The distnbution of ASC
between cell compartments is considered to be driven by a combination of pH and carrier-
mediated transport systems, so shifts in the pH of the apoplast would be predicted to result in
considerable changes in the concentration of ASC in the cell wall, and hence, Os; flux to the
plasmalemma. This infers that environmental factors which alter apoplast pH e.g. water deficit
(Hartung et al., 1988), light (Miihling ef al., 1995), nitrogen supply (Hoffmann ef al., 1992)
and gaseous pollutants including Os itself (Heath, 1988; Wellburn, 1990; Pfanz and Oppmann,
1991; Moldau, 1998) may affect resistance to the pollutant in a predictable manner. This
hypothesis is currently under investigation in the principle authors’ laboratory.
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Fig. 7 The influence of (i) apoplastic ascorbate concentration (uM), (ii) cell wall thickness (pm)
and (iii) apoplast pH on the simulated flux of ozone to the plasmalemma over a range of external
ozone concentrations, Model inputs (unless otherwise shown) were: leaf ascorbate concentration = 6
mM: stomatal conductance to water vapour = 200 mmol m” s™; cell wall thickness = 0.2 pm; apoplast
pH = 5.7; ascorbate/ozone reaction rate constant = 4.8 x 10’ M ™.

Present model formulations consider that Os; detoxification occurs solely the direct
reaction of the pollutant with apoplastic ASC. There are numerous other apoplastic
constituents that can scavenge O; and its reactive products e.g. metabolites, such as
polyamines and phenolic compounds (Bors ef al., 1989; Langebartels ef al, 1991; Eckey-
Kaltenbach et al., 1993, 1994), and enzymes, such as peroxidases and superoxide dismutase
(Castillo ef al., 1984; Castillo and Greppin, 1988; Polle ef al., 1990; Streller and Wingsle,
1994; Ogawa et al., 1996; Ranieri ef al., 1996; Vanacker ef al., 1998a, b, 1999; Lyons et al.,
1999b). Furthermore, the work of Deutsch (1998b) suggests that several of the oxidation
products of ASC (including DHA) may act as strong antioxidants. There are also numerous
reactions leading to the consumption of apoplastic ASC including the oxidative scission of cell
wall polysaccharides via the formation of hydroxy! radicals (Fry, 1998), reaction with phenoxy



radicals formed by cell wall peroxidases (Takahama and Oniki, 1992), regeneration of a-
tocopherol in the plasmalemma (Smirnoff, 1996) and the provision of substrate for ASC-
dependant peroxidases (Castillo and Greppin, 1988) and oxidases (Takahama and Oniki,
1994). Our ultimate objective is to extend SODA to account for these reactions. However, a
better understanding of the complex biochemistry of the apoplast is needed before this goal can
be realized.

Conclusions

Model simulations, allied to the available experimental data, indicate that extracellular
ASC may play a significant role in the detoxification of Os; under environmentally-relevant
conditions. Modulation of ASC content through various treatments leads to predictable shifts
in Oj resistance; suggesting that it maybe possible to manipulate resistance via transgenic
technology, particularly given recent advances in the characterisation of the biosynthetic
pathway of ASC in plants. However, the data presented suggest that the protection against O;
afforded by apoplastic ASC is unlikely to complete. It appears likely that additional
mechanisms may be important in capturing O; in the leaf apoplast. Future work should be
directed towards elucidating the nature of these extracellular defences and to the manipulation
of these defences through present-day gene technology.
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