研究課題名:風波気液界面における熱輸送機構の解明とモデリング

課題代表者:京都大学大学院工学研究科 小森 悟 共同研究者:京都大学大学院工学研究科 黒瀬良一・高垣直尚

実施年度:平成26年度~平成26年度

1. 研究目的

近年、世界各地で集中豪雨などの異常気象や強い熱 帯低気圧による被害が深刻な問題となっている。これ らの気候変動を予測する上で、風波気液界面を通して の熱・物質輸送機構を解明し、信頼性の高いモデルを 構築することが重要である。これまで海洋観測や風洞 水槽を用いた室内実験により、温度場や濃度場の測定 が行われてきた(例えば、Large and Pond 1982, Komori et al. 2011)。しかし、複雑に移動、変形する界面近傍 を正確に測定することは困難であり、熱・物質輸送機 構の解明は十分ではない。このような測定が困難な場 に対して、数値シミュレーションは有効であり、これ までにも風波乱流場に対して直接数値シミュレーショ ン (DNS) が行われてきた。しかし、それらは、液相 の物質輸送のみを対象としたものが多く(例えば、 Komori et al. 2010, Takagaki et al. 2015)、気液両相の熱 輸送を対象としたものは少ない。そこで、本研究では、 風波乱流場における気液両相の温度場ならびに気相比 湿場に対してDNSを適用し、気液界面を通しての熱輸 送と気液両相の流動場との関連性を調査した。なお、 本報告会では最近の台風等の予測のための熱および運 動量の輸送実験等についても述べる予定である。

2. 計算方法

支配方程式は、連続の式、Navier-Stokes 方程式、エ ネルギー方程式ならびに比湿の移流拡散方程式である。 ただし、比湿場は蒸発のみを考慮(凝縮は無視)した 気相のみを解き、温度および比湿はパッシブスカラと して扱った。

$$\frac{\partial v_i}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial v_i}{\partial t} + v_j \frac{\partial v_i}{\partial x_j} = -\frac{\partial P}{\partial x_i} + \frac{1}{\text{Re}} \frac{\partial^2 v_i}{\partial x_j \partial x_j}$$
(2)

$$\frac{\partial T}{\partial t} + v_j \frac{\partial T}{\partial x_j} = \frac{1}{\text{Re} \cdot \Pr r} \frac{\partial^2 T}{\partial x_j \partial x_j}$$
(3)

$$\frac{\partial q}{\partial t} + v_j \frac{\partial q}{\partial x_i} = \frac{1}{\text{Re} \cdot \text{Sc}} \frac{\partial^2 q}{\partial x_i \partial x_i}$$
(4)

ここで、*vi、T、q*は速度ベクトル、温度、比湿であり、 Re、Pr、ScはReynolds数、Prandtl数、Schmidt数である。 また*P*は重力を加味した圧力である。

界面追跡法には、界面形状に合わせて境界適合格子 をステップごとに再構築するALE(Arbitrary Lagrangian-Eulerian Formulation)法を採用した。界面に おける境界条件として、速度場には応力のつりあいを、 温度場ならびに比湿場には全熱、潜熱、顕熱、放射熱 のつりあいを与えた。

図1に本計算で採用した計算領域を示す。x、y、z方 向をそれぞれ主流、スパン、鉛直方向として、気液界 面をはさんで上側を気相、下側を液相とした。領域サ イズは10cm×4.85cm×3.75cm、格子点数は201×98×181 とした。数値解法は有限差分法に基づくMAC法を用い た。本計算では初期気側一様流速を U_{α} = 5.0m/s、初期 気側摩擦速度を u_{a} *= 0.24m/sとした。初期気側一様流速 と気相高さに基づくReynolds数は3900である。また、 Prandtl数は気相が0.71、液相が4.72、気相比湿場の Schmidt数は0.55である。

初期の気相の温度を28℃、液相の温度を46℃とし、 気相の比湿を0.015g/gとした。また、温度場ならびに 気相比湿場の計算は時刻t=3.0sから開始した。

図 1. 計算領域。

3. 結果および考察

はじめに、現実の風波乱流場が形成され、風波気液 界面を通しての熱輸送現象が再現されているかを確認 するために、気液界面を通しての潜熱輸送量に対する 顕熱輸送量の比で定義されるパラメータである、ボウ エン比 Bo を評価した(図 2)。図より、計算値は実験 値と良く一致しており、本計算により砕波(散液滴や 巻き込み気泡)を伴わない低風速条件下の風波乱流場 および輸送現象が良好に再現されていることがわかる。

図3に時刻t = 4.5sにおける界面における全熱フラックスの瞬間分布を示す。図中の赤色の点線は波頭の位置を示す。全熱フラックスは以下の式で算出した。

$$Q_T = k_w \frac{\partial T_L}{\partial \boldsymbol{n}}\Big|_i$$

ここで、kw は水の熱伝導率、TL は液相の温度、n は 界面の法線ベクトルである。全熱フラックスの分布に は、低フラックス領域にストリーク構造が確認でき、 また波頭の風下側においてもフラックスが低くなるこ とが確認できる。

(5)

図4に気液両相の渦度の瞬間分布を示す。渦度は赤色 が反時計周りの渦を、青色が時計周りの渦を示す。図 中の細い赤色の矢印と太い赤色の矢印は図3中のもの と対応しており、ストリークの位置を示す。図より、 細い矢印で示したストリーク構造は気相の渦構造との 関連性を示し、太い矢印で示したストリーク構造は液 相の渦構造との関連性を示すことが確認できる。この ことは、熱フラックスのストリーク構造が気液両相の 渦構造の影響を受けて形成されることを示唆する。な お、波頭の風下側における全熱フラックスの低下は、 剥離流により高温・高比湿な流体が滞留することに起 因すると考えられる。以上の考察より、風波気液界面 を通しての熱輸送は気液両相の組織的渦構造と風波形 状の影響を受けていることがわかる。

4. まとめ

本研究では、風波乱流場における気液両相の温度場 ならびに気相比湿場に対して DNS を適用することに より、気液界面を通しての熱輸送と気液両相の流動場 との関連性について調査した。その結果、気液界面を 通しての潜熱輸送量に対する顕熱輸送量の比であるボ ウエン比は実測値と良く一致し、本 DNS により現実 の風波乱流場および気液界面を通しての熱輸送現象が 良好に再現されることを確認した。また、風波気液界 面を通しての熱輸送は気液両相の組織的な渦構造と風 波形状の影響を受けることがわかった。

5. 参考文献

Komori, S. et al., (2010), Journal of Turbulence, 11, 1-20. Komori S. et al., (2011), GAS TRANSFER AT WATER

SURFACES 2010, Kyoto University Press, pp.78-89.

Large, G., Pond, S. (1982), Journal of Physical Oceanography, 12, 464-481.

Takagaki, N. et al., (2015), Physics of Fluids, 27, 016603.

6. 昨年度計算機資源の利用状況(2014年4月1 日~2015年3月31日、SX-9/A(ECO))

実行ユーザ数:3

CPU 時間 v_deb: 388.84 hours, v_cpu: 0.00 hours, v_8cpu: 0.00 hours, v_16cpu: 23,893.68 hours, 計: 24,282.52 hours

図3. 界面における全熱フラックスの瞬間分布。

図4. 気液両相の渦度の瞬間分布。