発表論文

Decadal trends in the seasonal-cycle amplitude of terrestrial CO2 exchange resulting from the ensemble of terrestrila biosphere models

著者
Ito A., Inatomi M., Huntzinger D. N., Schwalm C., Michalak A. M., Cook R., King A. W., Mao J., Wei Y., Post W. M., Wang W., Arain M. A., Huang M., Lei H., Tian H., Lu C., Yang J., Tao B., Jain A., Poulter B., Peng S., Ciais P., Fisher J. B., Parazoo N., Schaefer K., Peng C., Zeng N., Zhao F.
雑誌名
Tellus B., 68, 28968
DOI
10.3402/tellusb.v68.28968
概要

The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO2, climate, land-use, and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO2 concentrations. Results from factorial simulation experiments showed shown that elevated atmospheric CO2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19% to +0.50% yr−1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Nevertheless, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.

伊藤昭彦「陸域生態系のCO2交換における季節振幅は拡大傾向にある 複数モデルのシミュレーション結果に基づく解析」地球環境研究センターニュース2016年7月号