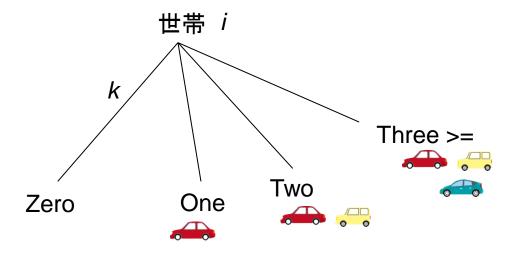
ICUE 2014, 19th to 21st March 2014, Pattaya, Chonburi, Thailand

Spatially explicit land-use and energy scenario of Tokyo using household level microdata

Hajime Seya, Yoshiki Yamagata, Kumiko Nakamichi

National Institute for Environmental Studies, JAPAN



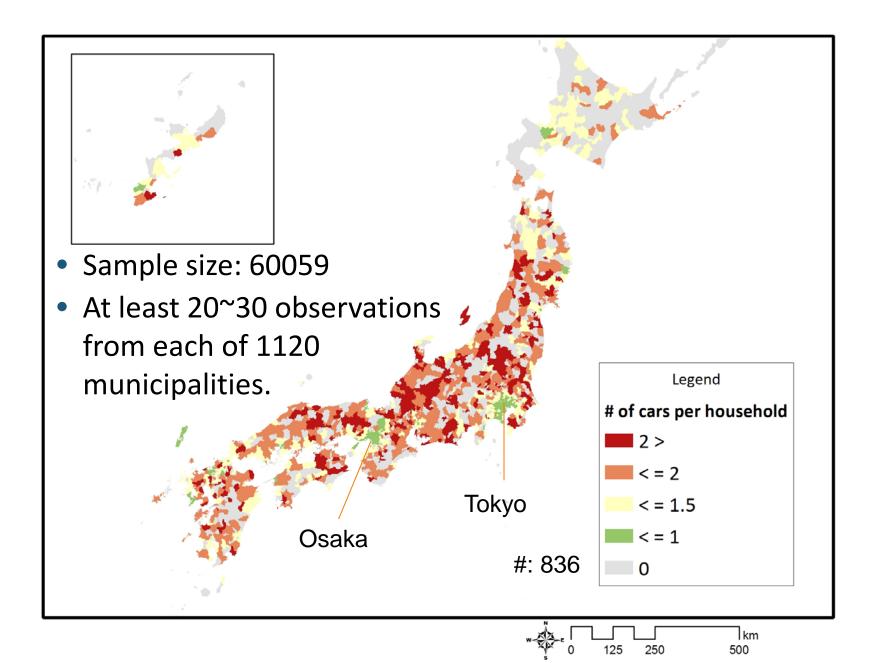
Data

- Household level Microdata of "National survey of family income and expenditure" of Ministry of Internal Affairs and Communications, Japan.
- This survey is conducted in the autumn of every five years since 1959, to investigate household's monthly expenditure behavior.
- This is a quite extensive survey implemented against approximately 60,000 households.
- We had applied the microdata data to the ministry, and finally obtained it. Here, we use the data of 2004.

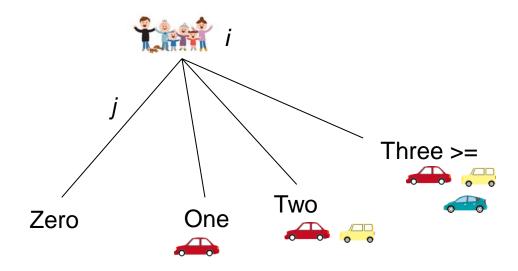
Using this data, we try to provide useful information to support real urban policy.

Research agenda

- 1. Identify key factors that affect vehicle ownership behavior.
 - This is important because Nakamichi et al. (2013) suggested that once people own cars, they may keep using it even after their moving to fairly dense public transportation areas.
 - Especially, we focus on the question: Is <u>parking price</u> affect vehicle ownership behavior?
 - The possibility of controlling parking prices to reduce vehicle ownership has recently been discussed in compact city related literatures (OECD, 2012; Guo, 2013), but based on our review, it is not empirically verified because of lack of data.
- 2. Create Japanese municipality level electricity/gasoline intensity data using spatial statistical model.
 - Existing studies: Prefecture level (We only show the prediction result)
- 3. Combining the data with our developed land-use model, and create future energy scenarios of Tokyo.
 - Ongoing (We show some progress)



Vehicle ownership behavior



- We assume that each household i choose the highest utility alternative j.
- The choice behavior is formulated as ordered logit model based on random utility theory.

$$\begin{cases} R_{ij} = 0 & \text{if } -\infty < U_{ij} < \mu_{i1}, \\ R_{ij} = 1 & \text{if } \mu_{i1} < U_{ij} < \mu_{i2}, \\ R_{ij} = 2 & \text{if } \mu_{i2} < U_{ij} < \mu_{i3}, \\ R_{ij} = 3 \text{ (and over) if } \mu_{i3} < U_{ij} < \infty. \end{cases}$$

Uij: Utility of alternative j for household i

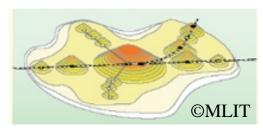
Specification of the utility function

•
$$U_{ij} = \beta_{i0} x_{i1} + \beta_{i1} x_{i1} + ... + \beta_{iK} x_{iK} + \varepsilon_{ij}$$
.

Variable (expected sign)

- Income (+)
- Number of person in a household (+)
 - Family types (+-)
 - Employment density (-)
 - Depopulation areas dummy (+)
 - Area (+)
 - Population density (-)
 - Bus stop density (-)
 - Train station density (-)
 - Mixed density index [MDI] (-)

Urban policy - Parking price expenditure per car (-)



Compact urban form

Household family type

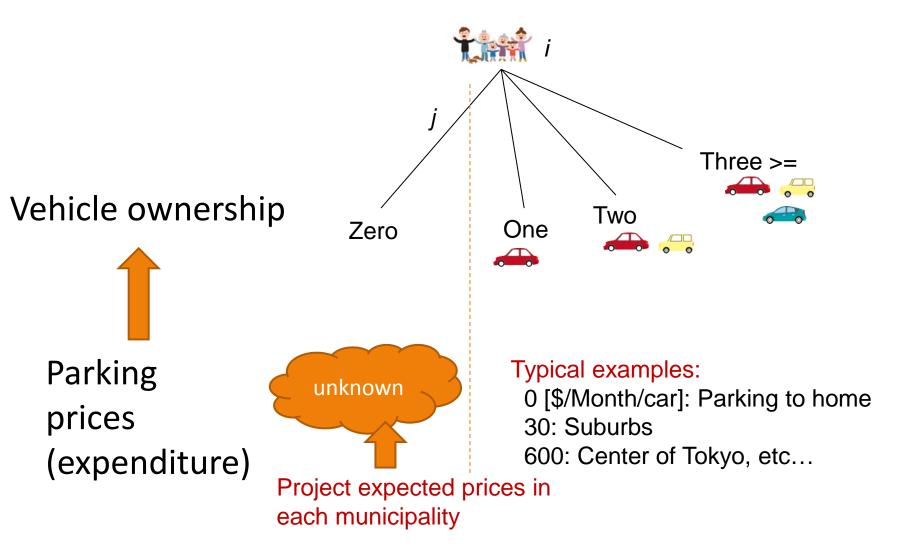
- a. One-person households (65 years of age or over)
- b. One-person households (under 65 years of age)
- c. Married couple only (either of them 65 years of age or over)
- d. Married couple only (both under 65 years of age)
- e. Married couple with child(ren)
- f. Single parent and child(ren)
- g. Other type

Urban compactness

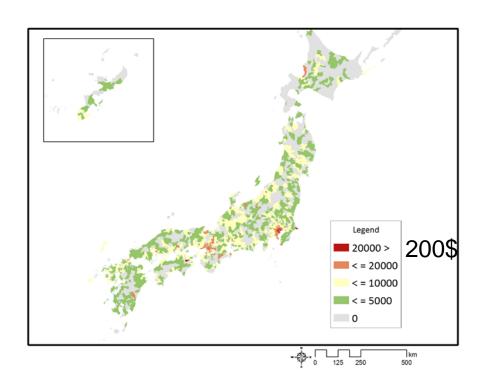
Household

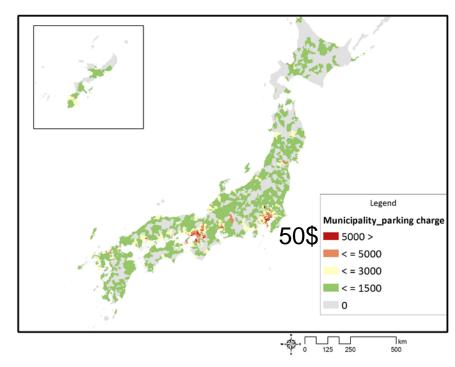
specific

Parking price prediction for non-car users



Average parking price





Exclude parking to home

Include parking to home

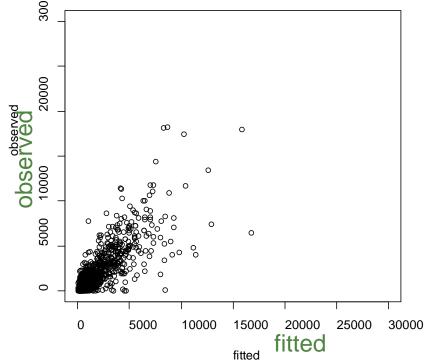
Prediction of municipality average parking price

Zero-inflated negative binomial model

Parking to home or not [binary logit (zero-inflation) model] with probability π_i $logit(\pi_i) = z_i' \gamma$ $y_i \sim NB(\lambda_i, v)$ with probability $(1 - \pi_i)$

Parking prices [negative binomial count model]

	NB	Cou	Count model					
			Coef.	Std. error	Z			
Condominium share	(Intercept)		4.468	0.116	38.6			
	log(PopDens.)		0.2434	0.0680	3.58			
	log(EmpDens.)		0.1504	0.0669	2.25			
	1 Condo		1.386	0.151	9.18			
	Log(theta)		0.4440	0.0404	11.0			
	Logit Zero-inflation model							
	8		Coef.	Std. error	Z			
	(Intercept)		1.488	0.424	3.51			
	log(EmpDens.)		-0.7969	0.104	-7.66			
	Condo		-5.092	1.45	-3.50			
	Log-likelihood:		-8676					



City size category

- C1: Mega-city (Population over 1 million + Tokyo 23 wards)
- C2: Middle size city (Population 150 thousand~1 million)
- C3: Small city A (Population 50~150 thousand)
- C4: Small city B (Population 30~50 thousand)
- C5: Town and village

We use the given city size categories of this survey. The model parameters are estimated for each of the category.

Estimation result

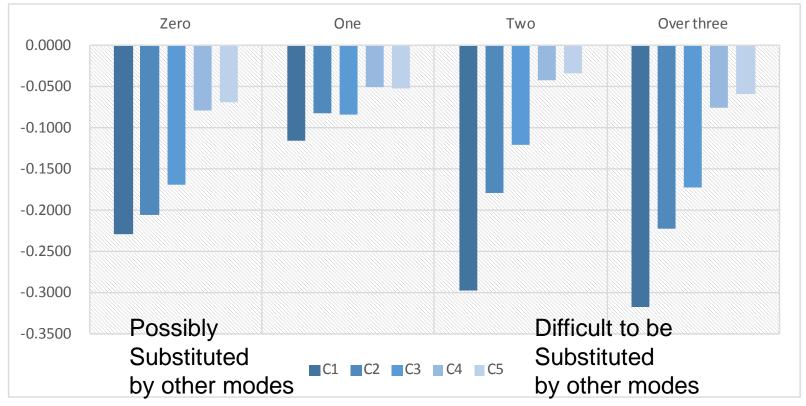
	C1 :		C2 :			C3:		C4:		C5:	
	1 mil	llion >	1M~1	50T		150T~	′50T	50T~30	TC	Town/vi	llages
	Category 1		Category 2		Category 3		Category 4		Category 5		
_	Coef.	Z	Coef.	Z		Coef.	Z	Coef.	Z	Coef.	Z
(Intercept)											
0 1	-6.377	-7.94 ***	-3.315	-8.04	***	-3.905	-11.8 ***	-1.263	-3.24 **	-1.845	-8.49 ***
1 2	-2.953	-3.70 **	-0.09890	-0.241		-0.8608	-2.62 **	1.494	3.86 ***	0.6848	3.22 **
2 3	-0.4276	-0.533	2.257	5.48	***	1.587	4.82 ***	4.119	10.5 ***	3.113	14.4 ***
Parking/1000	-0.06211	-12.7 ***	-0.09715	-24.3	***	-0.1187	-16.5 ***	-0.1692	-8.33 ***	-0.1707	-10.5 ***
Income/1000	0.001287	12.9 ***	0.001426	14.3	***	0.001954	19.5 ***	0.002568	25.7 ***	0.002433	24.3 ***
EmpDens.	-0.1044	-1.29	-0.06530	-1.11		0.5628	6.16 ***	-0.2284	-2.05 *	0.2722	3.51 ***
Depop	-1.137	-3.50 ***	0.2430	2.59	**	-0.1791	-2.17 *	-0.2434	-3.13 **	-0.1449	-2.41 *
Area	-0.003973	-5.68 ***	-0.000008664	-0.0866		-0.0003564	-3.56 .	-0.00007205	-0.360	0.00007567	0.757
PopDens	-0.6119	-7.03 ***	-0.1485	-3.33	***	-0.7229	-8.94 ***	0.2106	2.18 **	-0.2021	-2.63 **
BusDens	-0.03042	-1.69 .	-0.009024	-0.668		0.002091	0.132	0.2095	3.92 ***	-0.01983	-0.646
StaDens	-0.2250	-3.00 **	0.4297	2.42	*	-0.7783	-3.08 **	0.01760	1.25	-0.9260	-2.90 **
MDI	0.000009421	0.230	-0.0004627	-4.63	***	-0.0004343	-4.34 ***	-0.001132	-2.83 **	-0.001000	-5.00 ***
HH_num	0.3433	7.97 ***	0.3461	16.8	***	0.3059	11.5 ***	0.4506	12.1 ***	0.3770	14.8 ***
Type 1	-2.209	-9.22 ***	-3.469	-27.4	***	-3.705	-22.1 ***	-3.045	-14.5 ***	-3.106	-18.3 ***
Type2	-0.7684	-4.20 ***	-1.628	-16.2	***	-1.822	-13.5 ***	-1.301	-7.04 ***	-1.780	-12.0 ***
Type3	-0.5532	-3.82 ***	-1.398	-18.8	***	-1.690	-16.9 ***	-1.188	-9.09 ***	-1.334	-13.7 ***
Type4	0.5846	4.00 ***	-0.2251	-3.11	**	-0.4868	-5.13 ***	-0.1351	-1.08	-0.4146	-4.46 ***
Type5	-0.3367	-2.04 *	-0.9895	-11.8	***	-1.221	-10.5 ***	-0.9972	-6.21 ***	-1.159	-9.20 ***
Type6	0.3810	3.61 ***	-0.3665	-7.65	***	-0.5571	-9.03 ***	-0.2849	-3.50 ***	-0.4886	-8.60 ***
Hit ratio	0.6419		0.5659			0.5529		0.5614		0.5511	
Initial log-likelihood	-5644.4		-22503			-12478		-6166.3		-10860	
Final log-likelihood	-4585.2		-18289			-10013		-4904.6		-8793.8	
PseudoR2(McFadden)	0.1877		0.1873			0.1976		0.2046		0.1902	

Signif. codes: 0.1%(***), 1%(**), 5%(*), 10%(.)

Discussion

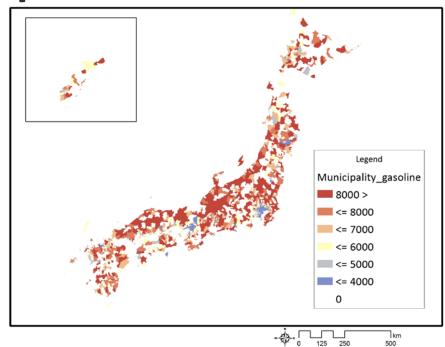
Elasticity of parking price

	Ordered logit model								
	Zero	One	Two	Over three					
C 1	-0.2288	-0.1144	-0.2966	-0.3167					
C2	-0.2056	-0.08263	-0.1784	-0.2225					
C 3	-0.1686	-0.08350	-0.1195	-0.1714					
C4	-0.07814	-0.05080	-0.04198	-0.07444					
C5	-0.06842	-0.05139	-0.03358	-0.05920					

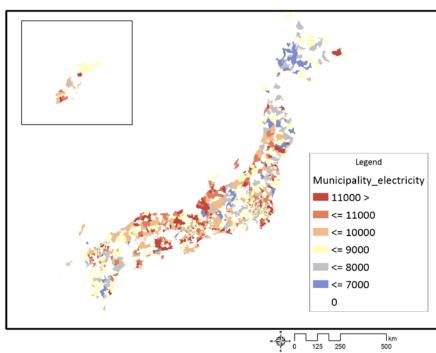


Elasticity value is rather small in absolute value.

Energy intensity prediction using spatial statistical model



Average gasoline expenditure per household



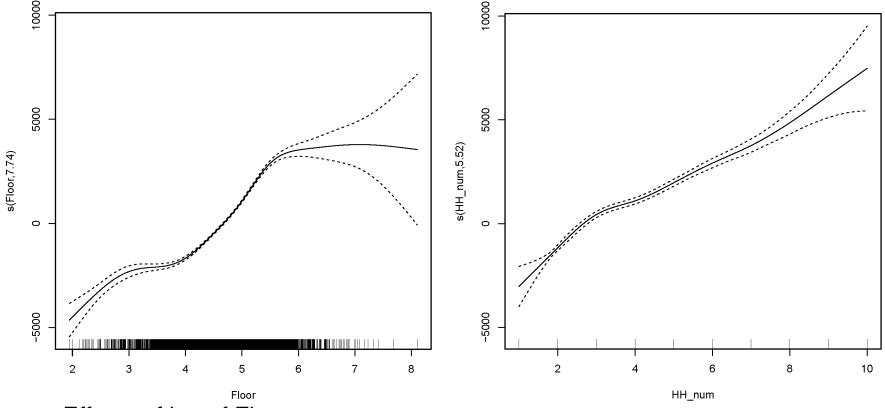
Average electricity expenditure per household

Constructing municipality level intensity (expenditure) data by statistical approach (geoadditive model).

We can consider sampling bias, and that future changes
of intensity value by using projected value of explanatory variables.

Some of the estimation results

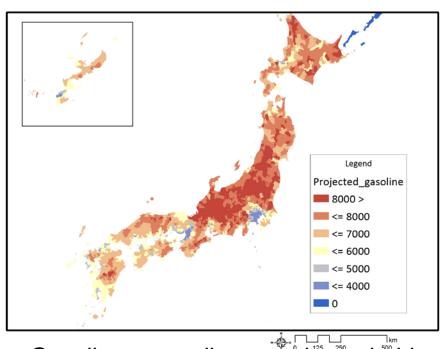
Nonlinear- effects by geoadditive model



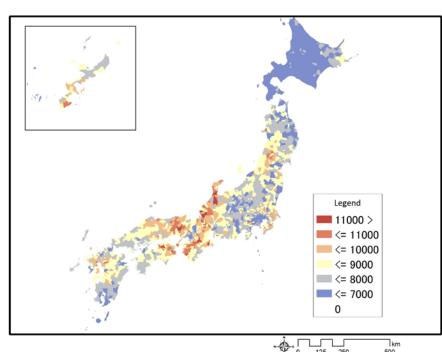
Effects of log of Floor area on electricity expenditure in a household

Effects # of person in a household on electricity expenditure in a household

Energy intensity prediction using spatial statistical model



Gasoline expenditure per household



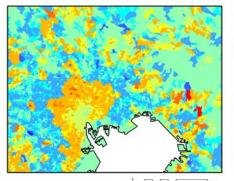
Electricity expenditure per household

- Significant differences among municipalities.
 - Does everyone need to move Tokyo or Osaka?
 - It is important to consider other various aspects for creating future scenarios.

Future works: Combining with land-use model of Yamagata et al. (2013)

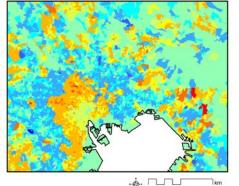
Land use model to household module Utility maximization Profit maximization Household Landlord Indirect utility Land supply Income (Zonal attractiveness) Land market Land rent Floor rent Choice of location Land demand Other Floor space attributes Floor space supply demand Floor market **Developer** Profit maximization 2050 urban form scenario

Population increase Compact scenario

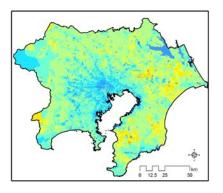


Combining the data

Population increase Compact + adaptation scenario



Current Micro-district level prediction of electricity intensity for 2005.



Statistical models $f(car ownership) = X\beta$ $f(energy consumptions) = X\beta$

Scenario assessment

Output: Floor space, population density, Ratio of condominiums, income, etc.